CHAN CHAL KUMAR MAJUMDAR

(11 August 1938 - 20 June 2000)

CHANCHAL KUMAR MAJUMDAR
(1938-2000)
Elected Fellow 1982

CHANCHAL KUMAR MAJUMDAR, a physicist of exceptional calibre and an outstanding scholar passed away on June 20, 2000. He was internationally renowned for his pioneering contributions in condensed matter theory, statistical mechanics and quantum many body problems. He was a perfectionist and this was evident in his research, teaching and writing. He was a person of rare honesty and never compromised on his principles. He was moreover an idealist and a dreamer and was indefatigable in promoting the cause of science.

FAMILY BACKGROUND AND EDUCATION
Majumdar was born on August 11, 1938 in Calcutta to Sita and Nirmal Kanti Majumdar. His father was a renowned professor of political science respected for his vast erudition. Majumdar and his two brothers, Ujjal and Mukul, in their turn, were remarkably brilliant students during their school, college and university years. Majumdar studied in St. John’s CMS School, Krishnanagar, West Bengal, Presidency College, Calcutta and University College of Science, Calcutta. He stood first in all the examinations obtaining record marks. His capacity for acquiring knowledge appeared to be limitless, he read extensively and on a wide range of subjects. Added to this were his prodigious memory and sharp intellect. Majumdar spent one year (1960-61) in the Saha Institute of Nuclear Physics as a Post-M.Sc. student and then left for the University of California (La Jolla), USA for doctoral studies. He obtained his Ph. D. degree in Physics in 1965. In 1968 he married Utpala Ghosh who was highly accomplished and proved to be his ideal partner.

Professor Majumdar’s advisor was the Nobel Laureate Maria G Mayer and his thesis supervisor, Walter Kohn, who later became a Nobel Laureate. Majumdar kept in touch with Kohn throughout his life. Kohn came all the way from America to Calcutta in January, 2002 to deliver the first Chanchal Kumar Majumdar Memorial Lecture held at the Indian Association for the Cultivation of Science. At the beginning of his lecture, Kohn expressed his profound admiration for Majumdar and his deep sense of loss at the passing away of his beloved student.

PROFESSIONAL AND RESEARCH CAREER
Majumdar came back to India in 1966 and joined the Tata Institute of Fundamental Research (TIFR), Mumbai as a Fellow. During his tenure at TIFR, Majumdar with a few colleagues and students...
the foundations of research in condensed matter physics in India. Majumdar was well-known for his outstanding mathematical abilities. At the same time he pioneered large-scale numerical computations in the country. His eminence as a teacher began to be established during this time. He taught several courses at TIFR. Graduate School (1966-1974) and at the Summer Schools on Advanced Quantum Mechanics. He left TIFR in 1975 to join the Physics Department of Calcutta University as Palit Professor. Majumdar came to Calcutta with the aim of rejuvenating physics education and research in the University. He firmly believed that, where higher education and research were concerned, development of universities should get the topmost priority. Universities, he felt, should attract the best scientific talent in the country so that excellence in both teaching and research is achieved. In one of his writings on the subject, he mentions “the strategy of having a few world class research establishments in India to maintain visibility in world science.” He further adds, “One has to admit that the strategy has good points too. But research and teaching in general in Indian universities has suffered in the process.”

In his teaching at the Calcutta University, Majumdar set the highest standards of rigour and perfection. He was an inspired teacher and forgot about time while immersed in lengthy mathematical calculations on the blackboard. His students loved and revered him. There are several amusing anecdotes regarding his interaction with them. In class, he would often call a student to the blackboard to work out a problem. Fear of being called to the blackboard prompted some of them to disappear before the beginning of class. Majumdar, with twinkling eyes and a mischievous smile, was sure to ferret them out of their hiding places in the canteen or some remote corner of the Physics Department.

He modernized the Departmental Library and experimental laboratories and would spend long hours in the laboratories setting up new experiments. Over a period of several years, he gave weekly lectures on a variety of topics to the research community in Calcutta. Attending his lectures was an unforgettable experience, specially, witnessing his feat of deriving lengthy and difficult mathematical calculations on the board without the aid of notes. He provided active help to many research groups in Calcutta and motivated some of them to take up challenging problems. In fact, his doors were always open to students as well as others in need of his help and he rarely said ‘no’ to a request. He would, on request, translate a scientific paper written in French, provide solution for a particularly difficult mathematical problem, give a set of lectures on astrophysics to school students in a remote village, speak on modernization of libraries at a book fair – the list was multifarious and endless. During his later years in Calcutta, he took up experimental research programmes. A well-known theoretical physicist, who was also a close friend of Majumdar, once remarked, “Some of us have Chanchal’s ability for doing difficult theoretical calculations. We cannot, however, construct a complicated electronic circuit which he can!”

Majumdar joined the Indian Association for the Cultivation of Science, Calcutta in 1982 and was there till 1987. Subsequently he became the Founder Director of the S. N. Bose National Centre for the Basic Sciences in Calcutta. The fledgeling Centre was almost like his child and he took great care in nurturing it and promoting quality research activity there. He retired from the Centre in February, 1999. He joined the Indian Statistical Institute, Calcutta as Emeritus Senior Scientist of the Indian National Science Academy. He started working on a project concerning research in magnetism
Chanchal Kumar Majumdar

in India. His untimely death left his students, colleagues and admirers in profound shock. Majumdar made significant contributions in several areas of condensed matter theory, quantum many body problem and statistical mechanics which brought him considerable international acclaim and recognition. A summary of some of his important contributions is given below.

SCIENTIFIC CONTRIBUTIONS

Positron Annihilation in Metals (PAM)

PAM is an useful technique for the analysis of various electronic properties of metals. A positron, on introduction into a metal, encounters an electron and the electron-positron pair annihilates giving rise to two gamma rays. One of the important experimentally measured quantities is the angular correlation of the gamma rays emanating from an annihilating event. Majumdar studied the effect of interactions, both electron-electron and electron-positron on PAM. In contrast to positron lifetimes, the angular correlation curve was found to be consistent with the predictions of free electron theory. The characteristic feature of normal metals is a sharp Fermi surface. This is the surface in momentum space at which a sharp discontinuity in the electron momentum distribution occurs at absolute zero temperature (T = 0). The Fermi surface, Majumdar showed, causes a sharp break in the angular correlation curve even if interactions are considered so that experimental investigation of the true Fermi surface of the interacting system of electrons is possible.

Majumdar further proposed an experiment to measure the effective mass of positrons in metals. On raising the temperature of a metal, the positron picks up thermal motion more quickly than the electrons as the latter are constrained by the Pauli exclusion principle. Since electrons move in response to the motion of positrons, the effective mass of the latter differs from the free mass. Majumdar’s proposal was that the effective mass can be determined from the temperature dependence of the angular correlation curve. Such experiments have been routinely performed to determine the effective mass of the positron in metals.

The two-dimensional angular correlation of annihilation radiation (2D ACAR) experiments measure the distribution of one or two components of the total momentum of the annihilating pair. Majumdar showed that information about the distribution of the total momentum can be obtained by appropriate analysis of the 2D ACAR data. The 2D ACAR experiments have been performed extensively in recent times in studies of metals, alloys and high temperature superconductors.

Many Body Problems and Magnetism

Kohn and Majumdar proved a theorem (later known as the ‘Kohn-Majumdar theorem’) on the continuity between the bound and unbound states in a noninteracting Fermi gas enclosed in a spherical box containing a spherically symmetric potential at the centre. In contrast to the single atom problem, the transition between bound and unbound states is smooth so that the properties of the entire system do not exhibit any nonanalyticity at the transition points. Similar conclusions are expected to be true under more general conditions, e.g., finite temperature, a periodic array of potentials and inclusion of sufficiently weak interactions. Experimental observations on dilute, nonmagnetic alloys and metallic Ce are in conformity with the predictions of the theorem.
The magnetic properties of insulating solids are well described by the Heisenberg exchange interaction Hamiltonian

$$H = -J \sum_{\langle ij \rangle} S_i \cdot S_j$$

S_i and S_j denote spins sitting at the lattice sites i and j and J is the strength of the exchange interaction. The sign of J determines whether the interaction is ferromagnetic (FM, $J > 0$) or antiferromagnetic (AFM, $J < 0$). In the first (second) case, the interacting spin pair tends to be parallel (antiparallel). Consider the spin-$1/2$ FM Heisenberg Hamiltonian with interaction only between nearest-neighbour (NN) spins. The lowest energy state, i.e., the ground state of the Hamiltonian is simple and has all the spins parallel, say, pointing upwards. The magnetic moments associated with the spins add up giving rise to the large moment of a ferromagnet. If one spin is turned over, it moves in the spin chain giving rise to an excitation known as a spin wave or a magnon. If two spins are flipped, they can move independently or together occupying NN lattice positions. The latter case describes a magnon bound state. In the general case of r magnons, Bethe, using the well-known Bethe Ansatz (BA), derived the eigenvalue of the r-magnon bound state. The BA suggests a form for the eigenfunction but the structure is not sufficiently explicit. The two-magnon problem has been completely solved in the work of Dyson, Hanus, Wortis, Fukuda and others.

Majumdar first formulated the three-magnon bound state problem using Faddeev’s three body equations. The integral equation was originally solved numerically for both the isotropic and longitudinally anisotropic Heisenberg Hamiltonians. Later, for the isotropic case, the integral equation was solved in an exact, analytic manner and the physical eigenfunction as well as the eigenvalue of the three magnon bound state problem were completely determined. This is one of the few examples of an exact, analytic solution of a non-trivial three body problem. Magnon bound states in linear chain compounds have been detected experimentally. The Hamiltonian displayed earlier describes an antiferromagnet if J is < 0. For the spin-$1/2$ linear chain in which only the NN spins interact, the ground state energy and the low-lying excitation spectrum can be determined exactly using the BA. The ground state wave function has a complicated structure as described by the BA. Majumdar and his student, Dipan K Ghosh proposed an AFM model Hamiltonian for which the exact ground state can be explicitly written down. The ground state is doubly degenerate and has a simple structure: alternate spin pairs are in singlet spin configurations in the ground state. Determination of the exact ground state of a many body Hamiltonian is in general a formidable task and the Majumdar-Ghosh chain provides an example of a many body system with a simple ground state. The MG model is now considered to be a landmark achievement in the area of exactly-solvable many body systems and has given rise to a large body of work on interacting spin systems, both in India and abroad. The model has a spin disordered ground state and has acquired special significance after the discovery of high temperature superconductors in which spin-disordered states play a prominent role. Some AFM compounds have been discovered recently which share similar physical features with the MG model.

Statistical Model and Computational Studies

Phase transitions and critical phenomena constitute an important area of study in statistical mechanics. In the vicinity of the critical point, the characteristic quantities of a system (e.g. the thermodynamic functions) become singular in a power-law fashion and the exponents in the power
are known as the critical exponents. The magnitude of the exponents depends on the dimensionality of the system and the number of components of the order parameter and not on the specific system. Critical phenomena have universal features and widely different systems belong to the same universality class if the corresponding critical exponents have the same values. Powerful numerical and analytical techniques like series expansions, Padé approximants and the renormalization group are available for calculating the critical parameters and exponents. Majumdar formulated a variant of the series expansion method in which the critical parameters and exponents are determined from the distribution of the zeros of the so-called cluster polynomials in the complex plane of some appropriate variable. The cluster polynomials appear in the low-density linked-cluster expansion of the free energy. The method is partly analytical and partly numerical and has been applied to both discrete models like the FM and AFM Ising models as well as to continuum models like the gas-liquid transition. For the latter case and with the pair potential having the Lennard-Jones form, the calculated critical parameters and exponents are in good agreement with the empirical data for inert gases. Some of the numerical results led to conjectures which were proved later.

Majumdar made an important contribution in the area of disordered solids. The time dependence of the stress relaxation in stabilized soda-lime glass was earlier studied by R Douglas, S F Edwards and others. Majumdar provided a simple explanation for the form of the non-exponential decay and a formula which gives the right order of magnitude of the long time scales involved. Majumdar pioneered computational studies in condensed matter physics in India. He and his co-workers applied state-of-the-art computational techniques to a variety of important problems like electronic band structure calculations of alpha and gamma-cerium, lower bound to the ground state energy of the Heisenberg Hamiltonian on a triangular lattice and the thermodynamic and dynamic properties of finite-sized spin chains and clusters.

Experimental and Applied Research

When Majumdar joined the Physics Department of Calcutta University as Palit Professor, he looked up the Trust Deed of Taraknath Palit and found that the Palit Professor was expected to run a laboratory. This motivated him to start planning experiments. The choice of experiments was dictated by both practical considerations (lack of financial resources in the University and shortage of trained manpower) as well as a desire to make use of the expertise available in the other Departments of the university and neighbouring Institutes. In the succeeding years, he initiated some interesting experimental research programmes in collaboration with students and other scientists.

One of these programmes was the Mössbauer study of the phenomenon of corrosion and its inhibitors. The rate of corrosion was determined through a measurement of the diffusion constant. A systematic investigation of some inhibitors of corrosion was also made. The relevance of the study comes from the fact that iron is the most widely used mineral in industry and corrodes easily due to atmospheric humidity. An interdisciplinary collaborative programme on rock magnetism involving physicists, chemists and geologists was further undertaken. Iron ore samples from different regions of eastern India were collected and the ferrous-ferric ratio in the samples was determined. Such measurements provide useful knowledge on the geochemical history of the ore. Majumdar was also associated with the radiation damage work carried out with the alpha-beam of the Variable Energy Cyclotron Centre, Calcutta on high-temperature superconducting cuprate samples. The critical
temperature of the Bi-Sr-Ca-Cu-O sample was found to increase considerably on alpha-irradiation. He collaborated on various other experiments involving cuprate systems. Majumdar further undertook an important fluid dynamical study of the Hooghly estuary. The river is prone to formation of shoals, sandbanks and islands in its lower reaches. This has given rise to operational problems in the vicinity of the Haldia port. Majumdar and co-workers, in active collaboration with the Calcutta Port Trust, developed a hydrodynamical numerical model of the Estuary Problem. Extensive computer simulation of the model provided significant insights on the remedial measures necessary to control the appearance of unwanted formations in the river. In an article titled Roots of Physics Research, Majumdar mentioned monsoon dynamics as another problem of great practical interest.

He felt that scientists need to be involved in greater numbers to work on similar problems in active collaboration with relevant government agencies like the Port Trust and Meteorological Office. To quote him, “I do not belittle the difficulties of such collaborations; they may be more than those of the scientific problem. But somewhere sometime a beginning has to be made.” In the same article, he raised the question “What is the aim of scientific research?” His answer was “It is the journey along the road to infinity that matters. And that journey has to be performed with dedication and scrupulous honesty.” At the end of the article, he quoted from Robert Browning, with apologies for changing the context of the poem,

“Look at the end of work, contrast
The petty Done, the Undone vast,
This Present of theirs with the hopeful Past!”

It was this feeling of ‘Undone Vast’ which drove Majumdar to take up endless tasks to the detriment of his health.

AWARDS AND HONOURS

Majumdar won several awards and prizes including the S. S. Bhatnagar Prize in the Physical Sciences (1976), Meghnad Saha Memorial Medal of the Asiatic Society (1978), UGC National Lecture in Physics (1978-79), P. A. Pandya Award of the Indian Physics Association (1979), Meghnad Saha Award for Theoretical Studies (UGC) (1983), Satyendranath Bose Medal of the Indian National Science Academy (1989), Santanu Ghosh Medal (Indian Science News Association, Calcutta 1991), Satyendranath Bose Birth Centenary Award of the Indian Science Congress Association (1997) etc. He was a Fellow of the Indian Academy of Sciences (Bangalore), the Indian National Science Academy (New Delhi), the National Academy of Sciences (Allahabad) and the American Physical Society. Twelve students obtained their Ph. D. degrees under his supervision. He published several research papers as well as miscellaneous writings in both Bengali and English. Precision and lucidity were the hallmarks of his writings. He had vast knowledge in subjects as diverse as history and philosophy.

Professor Majumdar was very close to his family. His daughter Ruchira and son Rupak are now in the U. S. A. Ruchira has a Ph. D. degree in Applied Mathematics and is at present teaching. Rupak has completed doctoral studies in theoretical computer science from the University of California, Berkeley. He currently holds a faculty position in Computer Science at the University of
California, Los Angeles. Majumdar was very fond of his students. He continued to teach in Calcutta University even after he left it. He would undertake long and exhausting bus journeys from his home to take classes. He left a message at the corner of the blackboard for the students to contact him at home if they faced any difficulty in their studies. A few days later, he passed away but the message was kept on the blackboard for several more months. When Majumdar was the Director of the S.N. Bose Centre, he went personally to the students of the Centre to convey messages to them. There are several anecdotes regarding his interaction with students during both his T. I. F. R. and Calcutta years and his old students were never tired of repeating some of these when chance brought them together.

Majumdar led a very simple life, he preferred the world of books to the one of material possessions. His character and qualities are reminiscent of those of the great son of Renaissance Bengal, Pandit Iswar Chandra Vidyasagar. Like him, Majumdar was deeply devoted to his mother, his scholarship was vast, he was a rare example of honesty and forthrightness, never sacrificing his integrity for personal convenience, he was tireless in the cause of education and lastly, he was extremely kind hearted and extended help to anyone who needed it. One can add to this Majumdar’s outstanding contributions in condensed matter physics. Posterity will remember him as a great physicist, a great scholar, a great teacher and above all as someone who dared to dream and forsook the easy path in pursuit of an ideal.

ACKNOWLEDGEMENT

The author (IB) thanks Utpala Majumdar, Saswati Dasgupta and Sunish Deb for their help in preparing the manuscript. The photograph of Professor C K Majumdar has been provided by Sunish Deb from his personal collection.

INDRANI BOSE
Department of Physics
Bose Institute
93/1, A.P.C. Road
Kolkata 700 009 (WB)
E-mail: indrani@bosemain.boseinst.ac.in

BIBLIOGRAPHY

1965 (With KOHN W) Continuity between bound and unbound states in a Fermi gas Phys Rev 138A 1617-1620
 — Two contributions to the theory of positron annihilation in metals. I. Determination of the true Fermi surface Phys Rev 140A 227-236
 — Two contributions to the theory of annihilation of positrons in metals. II. Effective mass of the positron Phys Rev 140A 237-244

1966 Continuity of bound and unbound states in a Fermi gas: a soluble example J Math Phys 7 682-690

Effective mass of the positron in sodium *Phys Rev* **149** 406-408

(With ZITTARTZ J) Minimal potentials for Schrödinger equation with fixed eigenvalue *J Math Phys* **7** 2278-2279

Isothermal Relaxation *J Math Phys* **162** 430-437

(With WARKE CS) Effect of paramagnetic impurity on the long lifetime of positron in liquid ammonia *Phys Rev* **162** 247-253

1968 Positron annihilation in liquids and solids, Lectures at Trieste published in 'Theory of Condensed Matter', IAEA, Vienna, 829-856

(With BHIDE MG) Effect of paramagnetic impurity on the long lifetime of positrons II. Oxygen molecule as impurity *Phys Rev* **169** 295-299

1969 Problem of two spin deviations in a linear chain with next-nearest-neighbour interactions *J Math Phys* **10** 177-180

(With MUKHOPADHYAY G) Band structures of α- and γ- cerium *J Phys C* **2** 924-925

(With GHOSH DK) On next-nearest-neighbour interaction in linear chain I *J Math Phys* **10** 1388-1398

(With GHOSH DK) On next-nearest-neighbour interaction in linear chain. II *J Math Phys* **10** 1399-1402

(With RAJAGOPAL AK) Positronium formation in hydrogen *Phys Rev* **184** 144-151

(With GHOSH DK and RAJAGOPAL AK) On magnetic stability of some Hamiltonians *Indian J Phys* **43** 282-288

(With BHIDE MG) Paramagnetic quenching of orthopositronium *J Phys B* **2** 966-971

(With RAJAGOPAL AK) Faddeev approach to three particle system with Coulomb interaction *Phys Letters* **30A** 429-430

Antiferromagnetic model with known ground state *J Phys C* **3** 911-915

(With MUKHOPADHYAY G) Three magnon bound states *Phys Letters* **31A** 321-322

(With RAJAGOPAL AK) Role of electron-electron interaction in the theory of positron annihilation in metals *Prog Theor Phys (Japan)* **44** 13-25
1970 (With RAJAGOPAL AK) Positronium formation in interacting electron gas *Prog Theor Phys (Japan)* 44 26-37
— (With RAJAGOPAL AK) Behaviour of positrons in solids *J Math Phys Sciences (Madras)* 4 109-159
— Stress relaxation function of glass *Solid State Communications* 9 1087-1090
— Determination of the total momentum distribution by positron annihilation *Phys Rev* B4 2111-2114
— Determination of the total momentum distribution by positron annihilation *Phys Rev* B4 26-37
— Solution of Faddeev equations for a one-dimensional system *J Math Phys* 13 705-708
— (With KRISHNAN K and MUBAYI V) Excitation spectrum of an antiferromagnetic model *J Phys C: Solid State Physics* 5 2896-2902
1972 (With RAJAGOPAL AK) Positron annihilation in the Wigner crystal *Phys Rev* B7 1850-1854
— (With MUBAYI V and KRISHNAN K) Heisenberg model for the 3X3 square lattice *J Phys Soc Japan* 34 1153-1157
— (With MUBAYI V and JAIN CS) Effective magnetic moments of a Heisenberg linear chain *Chem Phys Letters* 21 175-177
— (With MUBAYI V and KRISHNAN K) Distribution of zeros of the partition function for the finite two-dimensional Heisenberg model *Phys Rev* B8 3305-3308
— (With RAJAGOPAL AK) Positron annihilation in the Wigner crystal *Phys Rev* B8 2362-2364
— (With MUKHOPADHYAY G K and RAJAGOPAL AK) A simple derivation of the three magnon bound state equation *Pramâna* 1 135-146
— (With MUBAYI V and KRISHNAN K) Antiferromagnetic model with known ground state, International Conference on Magnetism, Moscow
1973 (With RAMAKRISHNAN TV) Positron annihilation in the Wigner crystal *Phys Rev* B7 1850-1854
— (With MUBAYI V and KRISHNAN K) Heisenberg model for the 3X3 square lattice *J Phys Soc Japan* 34 1153-1157
— (With MUBAYI V and JAIN CS) Effective magnetic moments of a Heisenberg linear chain *Chem Phys Letters* 21 175-177
— (With MUBAYI V and KRISHNAN K) Distribution of zeros of the partition function for the finite two-dimensional Heisenberg model *Phys Rev* B8 3305-3308
— (With RAJAGOPAL AK) Positron annihilation in the Wigner crystal *Phys Rev* B8 2362-2364
— (With MUKHOPADHYAY G K and RAJAGOPAL AK) A simple derivation of the three magnon bound state equation *Pramâna* 1 135-146
— (With MUBAYI V and KRISHNAN K) Antiferromagnetic model with known ground state, International Conference on Magnetism, Moscow
1974 (With ROY M) Tunnelling states in a potential of hexagonal symmetry *Solid State Communications* 14 695-698
— The critical phenomena, Lecture at the Ahmedabad conference on Statistical Physics ed. by R. Pratap, Hindustan Publishing Corporation, New Delhi, pp. 9-28
— A numerical determination of the critical isotherm of the ferromagnetic Ising model *Phys Rev* B10 2857-2867
1975 (With RAO RS, SHAstry BS and SINGH RP) Effect of correlation on the band structure of α-cerium Pramâna 4 45-52

— (With SHAstry BS) Approximate calculation of the excitation spectrum of the Heisenberg linear chain Phys Rev B12 2856-2864

— (With JAIN CS, KRISHNAN K and MUBAYI V) Exact numerical results on finite one and two-dimensional Heisenberg Hamiltonian Phys Rev B12 3235-3244

— Soluble models in statistical mechanics in Statistical Physics Journal of the Indian Institute of Science, Bangalore, 1-50

1976 Solution of the three magnon bound state equation, J Math Phys 17 474-477

— (With MUKHOPADHYAY SK) Solutions of the three magnon bound state equation II J Math Phys 17 478-479

— (With SHAstry BS) Lower bound to the ground state energy of the Heisenberg Hamiltonian on a triangular lattice Phil Mag 33 685-687

— Multimagnon bound states in Proceedings of the VII International Conference on Few Body Systems in Nuclear and Particle Physics at Delhi University, North Holland, pp. 386-389

— (With IYAKUTTI K, RAO RS and DEVANATHAN V) Effect of correlation on the band structure of zirconium J Phys F6 1639-1645

1978 (With BOSE I) Solutions of the three-magnon bound state equation. III. The physical eigenstate J Math Phys 19 2187-2192

1979 (With RAO RS and SINGH RP) Electronic energy bands in β-cerium Phys Rev B19 6274-6278

1980 (With SRIVASTAVA KN) Critical behaviour of spin-one three dimensional Ising model with single-ion anisotropy Phys Rev B21 3971-3975

— Why should we do two dimensional angular correlation? ‘Positron annihilation’, Proceedings of the National Symposium, April 1979, (Ed: PC Jain and RM Singru), South Asian Pvt. Ltd., New Delhi, pp. 89-95

— (With RAMARAO I) Critical field and low temperature critical indices of the ferromagnetic Ising model Phys Rev B22 3288-3293

1981 (With BANERJEE S) The physical solution of the three magnon bound state equation in one dimension Physica A 107 212-218

Spin waves and their bound states in Current Trends in Magnetism (Ed: NS Satyamurthy and L Madhav Rao) published by the Indian Physics Association, Bombay, pp. 244-262

Antiferromagnetism in the Heisenberg Hamiltonian Bull Materials Science 3 209-216

Applications of Catastrophe Theory to Phase Transformations in Catastrophe Theory and Applications (Ed: DK Sinha), South Asian Publishers Pvt. Ltd., New Delhi, pp. 74-79

1982 (With BANERJEE S) The three magnon bound state equation in one dimension J Math Phys 23 71-73

(With CHOUDHURY K, DAS BK and ADHIKARI M) Study of corrosion of steel in acid medium by Mössbauer spectroscopy Phys Stat Soli (a) 74 K27-30

Review of results of percolation theory in ‘Physics of Disordered Solids’ (Ed: P Shukla), Mittal Publishers, Delhi, pp. 35-47

(With DASGUPTA S) Phase diagram of an Ising antiferromagnet J Phys Soc Japan 51 3741-3742

1983 (With BHADRA K) Connectivity constant of the Kagomé lattice Pramāṇa 20 73-75

1984 (With BOSE I and CHATTERJEE S) Antiferromagnetic model with Néel states as ground states Phys Rev B 29 2741-2744

1984 (With MUKHOPADHYAY PK and DAS KC) Effect of correlation and spin-polarization on the band structure of metallic dysprosium Pramāṇa 23 385-394

1985 (With CHOUDHURI K, DAS D, RAO KRPM and ADHIKARI M) Mössbauer studies of corrosion and inhibition Phys Stat Solidi (a)91 29-35
— Broken symmetry in antiferromagnets Pramāṇa 25 505-512
— ‘Antiferromagnets’ in Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory (Ed: BS Shastry, SS Jha and V Singh), Springer-Verlag, Berlin Heidelberg, pp 142-157
— (With CHAUDHURI BK) A note on the superconductivity of some hydrides and nitrides of Nb and Ta metals Indian J Cryog 10 304-307

— (With DAS D, CHAKRABARTI M B and BOSE MK) Mössbauer spectroscopy of green shale from banded iron formation Pramāṇa J Physics 27 331-336

— Computation of critical parameters and indices from the Yang-Lee zeros of the partition function, Proceedings of International Conference in Mathematical Physics, Univ. of Chittagong, Bangladesh, 1986, published by University of Chittagong, Bangladesh, pp 207-222
— (With MUKHOPADHYAY G, DAS D and SEN P) Isochronal annealing studies on alpha -irradiated SS 302 Radiation Effects Express 1 141-145
— Stress relaxation in soda-lime-silicate glass in Non-Debye Relaxation in Condensed Matter (Ed: TV Ramakrishnan and M RajLakshmi), World Scientific, Singapore), 351-370

1988 (With MANDAL P, PODDAR A, NAMBISSAN PMG, CHOUDHURY P, GHOSH B and SEN P) Positron anihilation studies in the high temperature superconductors YBa2Cu3O7−x and HoBa2Cu3O7−x J Phys C: Sol St Physics 21 3151-3157
— (With DAS D, SENGUPTA D, CHOUDHURY K and BANERJEE C) Effect of alpha particle irradiation on the barrier height of Schottky diode Indian J Phys 62A 144-147
— (With CHOUDHURY K, DAS D and MUKHERJEE S) Mössbauer studies of the corrosion products of mild steel formed in sodium sulphate and sodium nitrate solutions J Materials Science Letters 7 1331-1332

- Resonating valence bond states in antiferromagnetism *Proc Indian Nat Sci Acad* **56A**(4) 301-314

1991 (With MUKHOPADHYAY G, DAS D and RAO KRPM) Study of radiation damage in stainless steel SS 302 by conversion electron Mössbauer spectroscopy *Phil Mag Lett* **63** 315-318

1992 (With Das D, CHAKRABORTY MB, CHOU DHURY K, NAMBISSAN PMG, BABU BRS, SEN P and SANGEETA) Mössbauer, XRD and positron annihilation studies on natural magnetite and hematite ore from Ari Dongri, Central India *Bull Mater Sci** 1**5 161-170

- (With Das D and CHAKRABORTY MB) Mössbauer studies on rocks from transitional shale beds of a typical banded iron formation *Indian J Pure and Applied Physics* **30** 263-266

- (With BANDYOPADHYAY SK, BARAT P, KAR SK, DE U, PODDAR A, MONDAL P and GHOSH B) Increase in critical temperature of Bi$_2$Sr$_2$CaCu$_2$O$_x$ superconductor due to alpha particle irradiation *Solid State Communication* **82** 397-399

- Phase transitions *Indian J Theoret Phys* **41** 25-33

1996

(With BABU DSS, DAS D, SUDARSHAN M, REDDY VR and CHINTALAPUDI SN) ⁵⁷Fe Mössbauer studies on natural ilmenites Indian J Pure and Appl Phys 34 474-479

— (With DAS D, SUDARSHAN M, CHINTALAPUDI SN and CHAKRAVORTY KL) ⁵⁷Fe Mössbauer studies on natural chromites Bull Mater Sci 19 1095-1103

1997

(With BHATTACHARYYA AK, HARTRIDGE A, MALLICK KK, DAS D and CHINTALAPUDI SN) An X-ray diffraction and Mössbauer study of nanocrystalline Fe₂O₃·Cr₂O₃ solid solution J Mater Sci 32 557-560

— (With HARTRIDGE A, BHATTACHARYA AK, SENGUPTA M, DAS D and CHINTALAPUDI SN) Crystallite size dependence on the magnetic properties of nanocrystalline magnetite powders J Mag and Mag Materials 176 L89-92

— (With BOSE M, SAHA J and SADASHIVA BK) EPR spectra of alkoxy and mixed alkyl-alkoxy substituted aryl β diketonates of discotic copper complexes 1: computer analysis to identify the quadrupole forbidden transitions Mol Cryst Liq Cryst 307 43-55

— (With BOSE M and SADASHIVA BK) EPR studies of alkyl substituted aryl β diketonates of discotic copper complexes 2: concentrated versus dilute systems Mol Cryst Liq Cryst 307 57-68

— (With SINHA TP, ROY RANJANA, MANDAL P and BHATTACHARYA M) Mössbauer and magnetic studies of intermetallic Fe-Mn-Ti alloy Indian J Phys 71A 267-271

1999

Magnetic properties of solids: Krishnan’s contribution in Condensed matter Physics (Ed: BK Agrawal and H Prakash), Narosa Publishing House, New Delhi, pp. 269-273

— Walter Kohn: Nobel Prize in Chemistry in 1998 Current Science 76 1451-1453

2000

(With DE U, MANDAL K and SANYAL D) Different regions of fluctuation conductivity in unirradiated and alpha-radiated Bi₂Sr₂CaCu₂O₈⁺ and (Bi,Pb)₂Sr₂CaCu₂O₈⁺ superconductors Physica C 339 113

2001

(With RAJENDRAN M, PULLER RC, BHATTACHARYA AK, DAS D and CHINTALAPUDI SN) Magnetic properties of nanocrystalline CoFe₂O₄ powders prepared at room temperature by a redox process: variation with crystallite size J Mag Mag Materials 232 71-83

— (With RAJENDRAN M, BHATTACHARYA AK, DAS D and CHINTALAPUDI SN) Magnetic properties of nanocrystalline NiFe₂O₄ powders prepared by an aqueous oxidative precipitation process Int J Mod Physics B 15 305-312